Floer cohomology of -equivariant Lagrangian branes

Autor: James Pascaleff, Yanki Lekili
Rok vydání: 2015
Předmět:
Zdroj: Lekili, Y & Pascaleff, J 2016, ' Floer cohomology of g-equivariant Lagrangian branes ', COMPOSITIO MATHEMATICA, vol. 152, pp. 1071-1110 . https://doi.org/10.1112/S0010437X1500771X
ISSN: 1570-5846
0010-437X
DOI: 10.1112/s0010437x1500771x
Popis: Building on Seidel and Solomon’s fundamental work [Symplectic cohomology and$q$-intersection numbers, Geom. Funct. Anal. 22 (2012), 443–477], we define the notion of a $\mathfrak{g}$-equivariant Lagrangian brane in an exact symplectic manifold $M$, where $\mathfrak{g}\subset SH^{1}(M)$ is a sub-Lie algebra of the symplectic cohomology of $M$. When $M$ is a (symplectic) mirror to an (algebraic) homogeneous space $G/P$, homological mirror symmetry predicts that there is an embedding of $\mathfrak{g}$ in $SH^{1}(M)$. This allows us to study a mirror theory to classical constructions of Borel, Weil and Bott. We give explicit computations recovering all finite-dimensional irreducible representations of $\mathfrak{sl}_{2}$ as representations on the Floer cohomology of an $\mathfrak{sl}_{2}$-equivariant Lagrangian brane and discuss generalizations to arbitrary finite-dimensional semisimple Lie algebras.
Databáze: OpenAIRE