Negative energy waves in a shear flow with a linear profile

Autor: Yury Stepanyants, Germain Rousseaux, Philippe Maïssa
Přispěvatelé: Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Hydrodynamique et Ecoulements Environnementaux (HydEE), Département Fluides, Thermique et Combustion (FTC), Institut Pprime (PPRIME), ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut Pprime (PPRIME), ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers, Department of Mathematics and Computing, University of Southern Queensland (USQ)
Rok vydání: 2016
Předmět:
Zdroj: European Journal of Mechanics-B/Fluids
European Journal of Mechanics-B/Fluids, Elsevier, 2016, 56, pp.192-199. ⟨10.1016/j.euromechflu.2016.01.003⟩
ISSN: 0997-7546
1873-7390
DOI: 10.1016/j.euromechflu.2016.01.003
Popis: We present a derivation of the time averaged potential and kinetic energies for small-amplitude surface waves on a shear flow with constant vorticity. The effect of surface tension is also taken into consideration. It is demonstrated that the virial theorem of the energy equipartition between the potential and kinetic components is not valid in general for waves on a shear flow. We also show that waves with a negative energy may exist in a shear flow, and we find the condition for existence of such waves.
Databáze: OpenAIRE