Effect of social housing condition on heat shock protein (HSP) expression in the Shionogi mouse mammary carcinoma (SC115)

Autor: Joanne Weinberg, Leslie R. Kerr, Heather N. Andrews, Karen S. Strange, Joanne T. Emerman
Rok vydání: 2000
Předmět:
Zdroj: Breast Cancer Research and Treatment. 59:199-209
ISSN: 1573-7217
0167-6806
DOI: 10.1023/a:1006314010958
Popis: Our previous studies have shown that social housing conditions can significantly alter the growth rate of the Shionogi mouse mammary carcinoma (SC115). The present study extended our investigations to the molecular level by examining stressor effects on the expression of a group of stress-responsive proteins, the heat shock proteins (HSPs). We hypothesized that HSP expression in SC115 cells may be altered by (a) different social housing conditions in vivo and (b) steroid hormone and growth factor exposure in vitro. Mice were reared in groups (G) or as individuals (I). Immediately following tumor cell injection, mice were rehoused from group to individual (GI), from individual to group (IG), or they remained in groups (GG). Tumor tissue was resected at 0.8 g or 3.0 g, as evidence suggests that tumor size affects HSP expression, which in turn affects proliferation. The data demonstrate that expression of HSP25, 70, and 90 was increased in tumors from mice in the IG compared to GG and GI mice, at both tumor weights examined. In addition, in IG mice, HSP90 expression was greater in 0.8 g compared to 3.0 g tumors. Under controlled culture conditions, hormones known to stimulate SC115 growth both in vivo and in vitro altered HSP expression. Physiological levels of dihydrotestosterone (DHT) and pharmacological levels of hydrocortisone (HC) upregulated expression of HSP25, whereas physiological levels of beta-estradiol (E2) upregulated expression of HSP90. These data are the first to demonstrate that a psychosocial stressor, a change in social housing condition, can induce differential HSP expression. Further, these data show that hormones that regulate SC115 tumor growth, also alter HSP expression.
Databáze: OpenAIRE