Soliton Maxwell demons and long-tailed statistics in fluctuating optical fields
Autor: | Aharon J. Agranat, Ludovica Falsi, Davide Pierangeli, Fabrizio Di Mei, Feifei Xin, Eugenio DelRe |
---|---|
Rok vydání: | 2020 |
Předmět: |
Physics
Kerr effect Stochastic process Nonlinear Optics solitons maxwell demons Gaussian Physics::Optics Soliton (optics) Photorefractive crystals Gaussian fluctuations Atomic and Molecular Physics and Optics Maxwell's demon symbols.namesake Nonlinear Sciences::Exactly Solvable and Integrable Systems Amplitude Statistics Photorefractive crystal symbols Raman spectroscopy Nonlinear Sciences::Pattern Formation and Solitons |
Zdroj: | Optics letters (Online) 45 (2020): 648–651. doi:10.1364/OL.383895 info:cnr-pdr/source/autori:Xin F.; Di Mei F.; Falsi L.; Pierangeli D.; Agranat A.J.; DelRe E./titolo:Soliton Maxwell demons and long-tailed statistics in fluctuating optical fields/doi:10.1364%2FOL.383895/rivista:Optics letters (Online)/anno:2020/pagina_da:648/pagina_a:651/intervallo_pagine:648–651/volume:45 |
ISSN: | 1539-4794 |
DOI: | 10.1364/OL.383895 |
Popis: | We demonstrate experimentally in biased photorefractive crystals that collisions between random-amplitude optical spatial solitons produce long-tailed statistics from input Gaussian fluctuations. The effect is mediated by Raman nonlocal corrections to Kerr self-focusing that turn soliton–soliton interaction into a Maxwell demon for the output wave amplitude. |
Databáze: | OpenAIRE |
Externí odkaz: |