Sensitivity and specificity of machine learning classifiers and spectral domain OCT for the diagnosis of glaucoma

Autor: Fabrício R Silva, Fernanda Cremasco, Marcelo Dias, Vital Paulino Costa, V. G. Vidotti, Edson Satoshi Gomi, Graziela Massa Resende
Rok vydání: 2012
Předmět:
Zdroj: European journal of ophthalmology.
ISSN: 1724-6016
Popis: Purpose. To investigate the sensitivity and specificity of machine learning classifiers (MLC) and spectral domain optical coherence tomography (SD-OCT) for the diagnosis of glaucoma. Methods. Sixty-two patients with early to moderate glaucomatous visual field damage and 48 healthy individuals were included. All subjects underwent a complete ophthalmologic examination, achromatic standard automated perimetry, and RNFL imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, California, USA). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters. Subsequently, the following MLCs were tested: Classification Tree (CTREE), Random Forest (RAN), Bagging (BAG), AdaBoost M1 (ADA), Ensemble Selection (ENS), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Naive-Bayes (NB), and Support Vector Machine (SVM). Areas under the ROC curves (aROCs) obtained for each parameter and each MLC were compared. Results. The mean age was 57.0±9.2 years for healthy individuals and 59.9±9.0 years for glaucoma patients (p=0.103). Mean deviation values were -4.1±2.4 dB for glaucoma patients and -1.5±1.6 dB for healthy individuals (p
Databáze: OpenAIRE