A two-step process gets mRNA loaded and ready to go

Autor: Richard Robinson
Rok vydání: 2011
Předmět:
Zdroj: PLoS Biology
PLoS Biology, Vol 9, Iss 4, p e1001047 (2011)
ISSN: 1545-7885
Popis: The localization of ash mRNA in yeast requires the binding of She2p and the myosin adaptor protein She3p to its localization element, which is highly specific and leads to the assembly of stable transport complexes.
In eukaryotes, hundreds of mRNAs are localized by specialized transport complexes. For localization, transcripts are recognized by RNA-binding proteins and incorporated into motor-containing messenger ribonucleoprotein particles (mRNPs). To date, the molecular assembly of such mRNPs is not well understood and most details on cargo specificity remain unresolved. We used ASH1-mRNA transport in yeast to provide a first assessment of where and how localizing mRNAs are specifically recognized and incorporated into mRNPs. By using in vitro–interaction and reconstitution assays, we found that none of the implicated mRNA-binding proteins showed highly specific cargo binding. Instead, we identified the cytoplasmic myosin adapter She3p as additional RNA-binding protein. We further found that only the complex of the RNA-binding proteins She2p and She3p achieves synergistic cargo binding, with an at least 60-fold higher affinity for localizing mRNAs when compared to control RNA. Mutational studies identified a C-terminal RNA-binding fragment of She3p to be important for synergistic RNA binding with She2p. The observed cargo specificity of the ternary complex is considerably higher than previously reported for localizing mRNAs. It suggests that RNA binding for mRNP localization generally exhibits higher selectivity than inferred from previous in vitro data. This conclusion is fully consistent with a large body of in vivo evidence from different organisms. Since the ternary yeast complex only assembles in the cytoplasm, specific mRNA recognition might be limited to the very last steps of mRNP assembly. Remarkably, the mRNA itself triggers the assembly of mature, motor-containing complexes. Our reconstitution of a major portion of the mRNA-transport complex offers new and unexpected insights into the molecular assembly of specific, localization-competent mRNPs and provides an important step forward in our mechanistic understanding of mRNA localization in general.
Author Summary In eukaryotes, the majority of cells are asymmetric and a way to establish such polarity is directional transport of macromolecules along cytoskeletal filaments. Among the cargoes transported, mRNAs play an essential role, as their localized translation contributes significantly to the generation of asymmetry. To date, hundreds of asymmetrically localized mRNAs in various organisms have been identified. These mRNAs are recognized by RNA-binding proteins and incorporated into large motor-containing messenger ribonucleoprotein particles (mRNPs) whose molecular assembly is poorly understood. In this study, we used the well-characterized process of ASH1-mRNA transport in Saccharomyces cerevisiae to address the question of how localizing mRNAs are recognized and specifically incorporated into mRNPs. Surprisingly, we found that the previously implicated mRNA-binding proteins She2p and Puf6p do not bind to cargo mRNAs with high specificity. Instead, the cytoplasmic motor-adapter protein She3p is responsible for synergistic cargo binding with She2p and for the stable incorporation of specific localizing mRNA into the transport complex. We propose that the specific recognition of localizing mRNAs happens at the very last step of cytoplasmic mRNP maturation. Other organisms might employ similar mechanisms to establish cellular polarity.
Databáze: OpenAIRE