Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy

Autor: A. Diack-Rasselio, O. Rouleau, L. Coulomb, L. Georgeton, M. Beaudhuin, J.-C. Crivello, E. Alleno
Přispěvatelé: Institut de Chimie et des Matériaux Paris-Est (ICMPE), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Journal of Alloys and Compounds
Journal of Alloys and Compounds, Elsevier, 2022, 920, pp.166037. ⟨10.1016/j.jallcom.2022.166037⟩
ISSN: 0925-8388
DOI: 10.1016/j.jallcom.2022.166037⟩
Popis: International audience; The microstructure and the thermoelectric properties were systematically determined in the Fe2V1+xAl1-x, Fe2+xVAl1-x, Fe2-xV1+xAl series to investigate the influence of self-substitution on the Fe2VAl Heusler alloy. In the explored range of compositions (−0.1 < x < 0.1), all these series are solid solutions, which form anti-site defects to accommodate the off stoichiometry. They all crystallize in the cubic L21 structure, but their lattice parameter unusually increases with lxl. A Bader analysis based on Density Functional Theory calculations indicates that these uncommon lattice parameter changes arise from variations in the interatomic electron transfer. The antisite defects behave like dopants that control the conduction type and charge carrier concentration. This leads to large thermoelectric power factor (PF) in the Fe2V1+xAl1-x series, which displays the largest electronic mobility. PF = 6.7 mW m−1 K−2 at 250 K and PF = 3.2 mW m−1 K−2 at 325 K are reached in n-type Fe2V1.03Al0.97 and p-type Fe2V0.985Al1.015 respectively. The lattice thermal conductivity systematically decreases upon self-substitution, but with differences among the series which can be traced back to the interatomic electron transfer unveiled by the Bader analysis. Finally, the figure of merit is improved to ZT = 0.06 at 500 K in p-type Fe2V0.93Al1.07 and ZT = 0.15 at 420 K in n-type Fe2V1.08Al0.92.
Databáze: OpenAIRE