Discs and outflows in the early phases of massive star formation: Influence of magnetic fields and ambipolar diffusion

Autor: M. González, Neil Vaytet, Patrick Hennebelle, Benoît Commerçon, R. Mignon-Risse
Přispěvatelé: Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
Jazyk: angličtina
Rok vydání: 2022
Předmět:
FOS: Physical sciences
Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
01 natural sciences
magnetohydrodynamics (MHD)
methods: numerical
0103 physical sciences
Protostar
Astrophysics::Solar and Stellar Astrophysics
Magnetic pressure
010303 astronomy & astrophysics
Solar and Stellar Astrophysics (astro-ph.SR)
Astrophysics::Galaxy Astrophysics
Physics
Solar mass
stars: formation
010308 nuclear & particles physics
Ambipolar diffusion
Star formation
Astronomy and Astrophysics
[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]
Astrophysics - Astrophysics of Galaxies
Accretion (astrophysics)
Magnetic field
stars: massive
[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]
Astrophysics - Solar and Stellar Astrophysics
13. Climate action
Space and Planetary Science
radiative transfer
Astrophysics of Galaxies (astro-ph.GA)
hydrodynamics
Astrophysics::Earth and Planetary Astrophysics
Magnetohydrodynamics
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Zdroj: Astronomy and Astrophysics-A&A
Astronomy and Astrophysics-A&A, 2022, 658, pp.A52. ⟨10.1051/0004-6361/202037479⟩
ISSN: 0004-6361
Popis: We study mass accretion and ejection in the vicinity of massive star forming cores using high-resolution (5 au) 3D AMR numerical simulations. We investigate the mechanisms at the origin of outflows and characterise the properties of the disc forming around massive protostars. We include both protostellar radiative feedback via PMS evolutionary tracks and magnetic ambipolar diffusion. We studied 3 different cases: purely hydrodynamical, ideal MHD, and ambipolar diffusion. In the resistive models, we investigate the effects the initial amplitude of both magnetic field and rotation have on the properties of the massive protostellar system. We use simple criteria to identify the outflow and disc material and follow their evolution as the central star accretes mass up to 20 solar mass. The outflow is completely different when magnetic fields are introduced, so that magnetic processes are the main driver of the outflow up to stellar masses of ~20 solar mass. The disc properties depend on the physics included. The disc formed in the ideal and resistive runs show opposite properties in terms of plasma beta and of magnetic fields topology. While the disc in the ideal case is dominated by the magnetic pressure and the toroidal magnetic fields, the one formed in the resistive runs is dominated by the thermal pressure and has essentially vertical magnetic fields in the inner regions (R
21 pages, 16 figures, accepted for publication in A&A
Databáze: OpenAIRE