Vitamin A bio-modulates apoptosis via the mitochondrial pathway after hypoxic-ischemic brain damage
Autor: | Ping Qu, Yang Bi, Tingyu Li, Min Guo, Jie Chen, Yun Zhang, Yuan Shi, Min Gong, Wei Jiang, Li Chen, Youxue Liu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Retinoic acid Apoptosis Pharmacology Hippocampus lcsh:RC346-429 Rats Sprague-Dawley Phosphatidylinositol 3-Kinases chemistry.chemical_compound 0302 clinical medicine Vitamin A (VA) Retinoic acid (RA) Vitamin A Cells Cultured Spatial Memory bcl-2-Associated X Protein Membrane Potential Mitochondrial Neurons Vitamin A Deficiency Retinoic Acid Receptor alpha Mitochondria Caspases Mitochondrial membrane potential (MMP) Hypoxia-Ischemia Brain Female medicine.symptom Signal transduction Signal Transduction Tretinoin Brain damage Neuroprotection 03 medical and health sciences Cellular and Molecular Neuroscience In vivo medicine Animals Learning RNA Messenger Molecular Biology Protein kinase B PI3K/AKT/mTOR pathway lcsh:Neurology. Diseases of the nervous system PI3K/Akt business.industry Research Oxygen Glucose 030104 developmental biology chemistry Dietary Supplements Hypoxic-ischemic brain damage (HIBD) business Proto-Oncogene Proteins c-akt 030217 neurology & neurosurgery |
Zdroj: | Molecular Brain, Vol 11, Iss 1, Pp 1-16 (2018) Molecular Brain |
ISSN: | 1756-6606 |
Popis: | Our previous studies demonstrated that vitamin A deficiency (VAD) can impair the postnatal cognitive function of rats by damaging the hippocampus. The present study examined the effects of retinoic acid (RA) on apoptosis induced by hypoxic-ischemic damage in vivo and in vitro, and investigated the possible signaling pathway involved in the neuroprotective anti-apoptotic effects of RA. Flow cytometry, immunofluorescence staining and behavioral tests were used to evaluate the neuroprotective and anti-apoptotic effects of RA. The protein and mRNA levels of RARα, PI3K, Akt, Bad, caspase-3, caspase-8, Bcl-2, Bax, and Bid were measured with western blotting and real-time PCR, respectively. We found impairments in learning and spatial memory in VAD group compared with vitamin A normal (VAN) and vitamin A supplemented (VAS) group. Additionally, we showed that hippocampal apoptosis was weaker in the VAN group than that in VAD group. Relative to the VAD group, the VAN group also had increased mRNA and protein levels of RARα and PI3K, and upregulated phosphorylated Akt/Bad levels in vivo. In vitro, excessively low or high RA signaling promoted apoptosis. Furthermore, the effects on apoptosis involved the mitochondrial membrane potential (MMP). These data support the idea that sustained VAD following hypoxic-ischemic brain damage (HIBD) inhibits RARα, which downregulates the PI3K/Akt/Bad and Bcl-2/Bax pathways and upregulates the caspase-8/Bid pathway to influence the MMP, ultimately producing deficits in learning and spatial memory in adolescence. This suggests that clinical interventions for HIBD should include suitable doses of VA. Electronic supplementary material The online version of this article (10.1186/s13041-018-0360-0) contains supplementary material, which is available to authorized users. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |