Digital Pre-Distortion Coefficients Identification Using Gauss-Newton Based Direct Learning Architecture

Autor: Hexun Jiang, Mengfan Fu, Yixiao Zhu, Lilin Yi, Weisheng Hu, Qunbi Zhuge
Rok vydání: 2023
Zdroj: Optical Fiber Communication Conference (OFC) 2023.
DOI: 10.1364/ofc.2023.th1f.6
Popis: We propose to identify the coefficients of a digital pre-distortion equalizer based on direct learning architecture (DLA) using the Gauss-Newton method. Experimental results show that DLA outperforms indirect learning architecture by 0.5dB.
Databáze: OpenAIRE