On Singular Distributions With Statistical Structure
Autor: | Sergey Stepanov, Vladimir Rovenski, Paul Popescu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Lie algebroid
Pure mathematics General Mathematics Type (model theory) Curvature 01 natural sciences Operator (computer programming) statistical structure Computer Science (miscellaneous) harmonic differential form 0101 mathematics Engineering (miscellaneous) almost Lie algebroid Mathematics Riemannian manifold singular distribution lcsh:Mathematics 010102 general mathematics lcsh:QA1-939 010101 applied mathematics Singular distribution Mathematics::Differential Geometry Laplace operator Weitzenböck curvature operator Distribution (differential geometry) |
Zdroj: | Mathematics, Vol 8, Iss 1825, p 1825 (2020) Mathematics Volume 8 Issue 10 |
ISSN: | 2227-7390 |
Popis: | In this paper, we extend our previous study regarding a Riemannian manifold endowed with a singular (or regular) distribution, generalizing Bochner&rsquo s technique and a statistical structure. Following the construction of an almost Lie algebroid, we define the central concept of the paper: The Weitzenbö ck type curvature operator on tensors, prove the Bochner&ndash Weitzenbö ck type formula and obtain some vanishing results about the null space of the Hodge type Laplacian on a distribution. |
Databáze: | OpenAIRE |
Externí odkaz: |