An Inverse Problem for the Riemannian Minimal Surface Equation
Autor: | Catalin Carstea, Matti Lassas, Tony Liimatainen, Lauri Oksanen |
---|---|
Rok vydání: | 2023 |
Předmět: | |
DOI: | 10.2139/ssrn.4354195 |
Popis: | In this paper we consider determining a minimal surface embedded in a Riemannian manifold $\Sigma\times \mathbb{R}$. We show that if $\Sigma$ is a two dimensional Riemannian manifold with boundary, then the knowledge of the associated Dirichlet-to-Neumann map for the minimal surface equation determine $\Sigma$ up to an isometry. Comment: 18 pages |
Databáze: | OpenAIRE |
Externí odkaz: |