An Inverse Problem for the Riemannian Minimal Surface Equation

Autor: Catalin Carstea, Matti Lassas, Tony Liimatainen, Lauri Oksanen
Rok vydání: 2023
Předmět:
DOI: 10.2139/ssrn.4354195
Popis: In this paper we consider determining a minimal surface embedded in a Riemannian manifold $\Sigma\times \mathbb{R}$. We show that if $\Sigma$ is a two dimensional Riemannian manifold with boundary, then the knowledge of the associated Dirichlet-to-Neumann map for the minimal surface equation determine $\Sigma$ up to an isometry.
Comment: 18 pages
Databáze: OpenAIRE