Second-order sensitivity relations and regularity of the value function for Mayer's problem in optimal control

Autor: Piermarco Cannarsa, Hélène Frankowska, Teresa Scarinci
Přispěvatelé: Scarinci, Teresa, Sensitivity Analysis for Deterministic Controller Design - SADCO - - EC:FP7:PEOPLE2011-01-01 - 2014-12-31 - 264735 - VALID, Dipartimento di Matematica [Roma II] (DIPMAT), Università degli Studi di Roma Tor Vergata [Roma], Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), 'Instituto Nazionale di Alta Matematica' (INdAM), through the GNAMPA Research Project 2014, European Project: 264735,EC:FP7:PEOPLE,FP7-PEOPLE-2010-ITN,SADCO(2011)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2015, 53 (6), pp 3642/3672
SIAM Journal on Control and Optimization, 2015, 53 (6), pp 3642/3672
ISSN: 0363-0129
1095-7138
Popis: 29 pages; International audience; This paper investigates the value function, $V$, of a Mayer optimal control problem with the state equation given by a differential inclusion. First, we obtain an invariance property for the proximal and Fréchet subdifferentials of $V$ along optimal trajectories. Then, we extend the analysis to the sub/superjets of $V$, obtaining new sensitivity relations of second order. By applying sensitivity analysis to exclude the presence of conjugate points, we deduce that the value function is twice differentiable along any optimal trajectory starting at a point at which $V$ is proximally subdifferentiable. We also provide sufficient conditions for the local $C^2$ regularity of $V$ on tubular neighborhoods of optimal trajectories.
Databáze: OpenAIRE