The ZNF750–RAC1 axis as potential prognostic factor for breast cancer
Autor: | Matteo Cassandri, Gerry Melino, Massimiliano Agostini, Alessio Butera, Francesco Rugolo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0301 basic medicine
Zinc finger Cancer Research Settore BIO/11 Immunology Cell migration RAC1 Promoter Cell Biology Biology medicine.disease Article Tumour biomarkers 03 medical and health sciences Cellular and Molecular Neuroscience 030104 developmental biology 0302 clinical medicine Breast cancer Downregulation and upregulation Transcription (biology) 030220 oncology & carcinogenesis Cancer research medicine Transcription factor |
Zdroj: | Cell Death Discovery |
ISSN: | 2058-7716 |
Popis: | The human zinc finger (C2H2-type) protein ZNF750 is a transcription factor regulated by p63 that plays a critical role in epithelial tissues homoeostasis, as well as being involved in the pathogenesis of cancer. Indeed, missense mutations, truncation and genomic deletion have been found in oesophageal squamous cell carcinoma. In keeping, we showed that ZNF750 negatively regulates cell migration and invasion in breast cancer cells; in particular, ZNF750 binds and recruits KDM1A and HDAC1 on the LAMB3 and CTNNAL1 promoters. This interaction, in turn, represses the transcription of LAMB3 and CTNNAL1 genes, which are involved in cell migration and invasion. Given that ZNF750 is emerging as a crucial transcription factor that acts as tumour suppressor gene, here, we show that ZNF750 represses the expression of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (RAC1) in breast cancer cell lines, by directly binding its promoter region. In keeping with ZNF750 controlling RAC1 expression, we found an inverse correlation between ZNF750 and RAC1 in human breast cancer datasets. More importantly, we found a significant upregulation of RAC1 in human breast cancer datasets and we identified a direct correlation between RAC1 expression and the survival rate of breast cancer patient. Overall, our findings provide a novel molecular mechanism by which ZNF750 acts as tumour suppressor gene. Hence, we report a potential clinical relevance of ZNF750/RAC1 axis in breast cancer. |
Databáze: | OpenAIRE |
Externí odkaz: |