Genetic dissection of canine hip dysplasia phenotypes and osteoarthritis reveals three novel loci
Autor: | Saila Holopainen, Tiina Pessa-Morikawa, Lea Mikkola, Hannes Lohi, Marjo K. Hytönen, Antti Iivanainen, Anu K. Lappalainen |
---|---|
Přispěvatelé: | Helsinki One Health (HOH), Developmental interactions, Veterinary Biosciences, Department of Medical and Clinical Genetics, Small Animal Hospital, Hannes Tapani Lohi / Principal Investigator, Equine and Small Animal Medicine, Antti Iivanainen / Principal Investigator, Veterinary Anatomy and Developmental Biology, Departments of Faculty of Veterinary Medicine, Doctoral Programme in Clinical Veterinary Medicine, Veterinary Genetics, Petbone – ortopedia, fysioterapia, kivunlievitys |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Mild Dysplasia
Candidate gene INVASION Osteoarthritis 413 Veterinary science Bioinformatics Hip dysplasia (canine) Joint laxity 0403 veterinary science Dog Hip Dysplasia Canine Dog Diseases 2. Zero hunger 0303 health sciences JOINT 1184 Genetics developmental biology physiology Chromosome Mapping ASSOCIATION 04 agricultural and veterinary sciences Hip dysplasia 3. Good health German shepherd medicine.anatomical_structure Phenotype GENOMIC PREDICTION Biotechnology Research Article musculoskeletal diseases Genome-wide association study lcsh:QH426-470 040301 veterinary sciences lcsh:Biotechnology Quantitative Trait Loci Biology Polymorphism Single Nucleotide 03 medical and health sciences Femoral head SYNOVIAL-FLUID Dogs lcsh:TP248.13-248.65 Genetics medicine Animals Genetic Predisposition to Disease Alleles Genetic Association Studies 030304 developmental biology Subluxation IDENTIFICATION NOGGIN medicine.disease lcsh:Genetics Dysplasia FEMORAL-HEAD |
Zdroj: | BMC Genomics, Vol 20, Iss 1, Pp 1-13 (2019) BMC Genomics |
ISSN: | 1471-2164 |
Popis: | Background Hip dysplasia and osteoarthritis continue to be prevalent problems in veterinary and human medicine. Canine hip dysplasia is particularly problematic as it massively affects several large-sized breeds and can cause a severe impairment of the quality of life. In Finland, the complex condition is categorized to five classes from normal to severe dysplasia, but the categorization includes several sub-traits: congruity of the joint, Norberg angle, subluxation degree of the joint, shape and depth of the acetabulum, and osteoarthritis. Hip dysplasia and osteoarthritis have been proposed to have separate genetic etiologies. Results Using Fédération Cynologique Internationale -standardized ventrodorsal radiographs, German shepherds were rigorously phenotyped for osteoarthritis, and for joint incongruity by Norberg angle and femoral head center position in relation to dorsal acetabular edge. The affected dogs were categorized into mild, moderate and severe dysplastic phenotypes using official hip scores. Three different genome-wide significant loci were uncovered. The strongest candidate genes for hip joint incongruity were noggin (NOG), a bone and joint developmental gene on chromosome 9, and nanos C2HC-type zinc finger 1 (NANOS1), a regulator of matrix metalloproteinase 14 (MMP14) on chromosome 28. Osteoarthritis mapped to a long intergenic region on chromosome 1, between genes encoding for NADPH oxidase 3 (NOX3), an intriguing candidate for articular cartilage degradation, and AT-rich interactive domain 1B (ARID1B) that has been previously linked to joint laxity. Conclusions Our findings highlight the complexity of canine hip dysplasia phenotypes. In particular, the results of this study point to the potential involvement of specific and partially distinct loci and genes or pathways in the development of incongruity, mild dysplasia, moderate-to-severe dysplasia and osteoarthritis of canine hip joints. Further studies should unravel the unique and common mechanisms for the various sub-traits. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |