Canonical heights and division polynomials

Autor: Robin de Jong, J. Steffen Müller
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Mathematical Proceedings of the Cambridge Philosophical Society, 157(2), 357-373
Popis: We discuss a new method to compute the canonical height of an algebraic point on a hyperelliptic jacobian over a number field. The method does not require any geometrical models, neither $p$-adic nor complex analytic ones. In the case of genus 2 we also present a version that requires no factorisation at all. The method is based on a recurrence relation for the `division polynomials' associated to hyperelliptic jacobians, and a diophantine approximation result due to Faltings.
Comment: 17 pages, 2 figures, 2 tables; comments welcome
Databáze: OpenAIRE