Unfolding Method for Diffusion Process in a Rarefied Binary Structure
Autor: | G. Griso, L. Merzougui |
---|---|
Přispěvatelé: | Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Hadj Lakhdar Batna 1, Griso, Georges |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
strange term
binary structure Applied Mathematics 010102 general mathematics Mathematical analysis homogenization Binary number [MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] 01 natural sciences Homogenization (chemistry) 010101 applied mathematics Diffusion process evolution problem [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Small particles Statistical physics [MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] 0101 mathematics 2010 MSC: 35A01 74Q10 74Q15 76M50 Analysis [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] Mathematics |
Zdroj: | Applicable Analysis Applicable Analysis, 2017 Applicable Analysis, Taylor & Francis, 2017 |
ISSN: | 0003-6811 1563-504X |
Popis: | International audience; The aim of this paper is to study the homogenization of a diffusion process which takes place in a binary structure made by an ambient connected phase surrounding the suspensions (very small particles of diameter of order εδ) distributed in an ε-periodic network. Using the periodic unfolding method introduced in [4], in the critical case, when ε and δ go to 0 we determine the asymptotic behavior of the solution of an evolution problem. |
Databáze: | OpenAIRE |
Externí odkaz: |