Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields

Autor: M. Sigelle, Yves Delignon, Florence Tupin, Wojciech Pieczynski, Roger Fjortoft
Přispěvatelé: Norwegian Computing Center (NR), Communications, Images et Traitement de l'Information (CITI), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Laboratoire Traitement et Communication de l'Information (LTCI), Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), Département Traitement du Signal et des Images (TSI), Centre National de la Recherche Scientifique (CNRS)-Télécom ParisTech, Institut TELECOM/TELECOM Lille1, Institut Mines-Télécom [Paris] (IMT), Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2003
Předmět:
Synthetic aperture radar
Unsupervised classification
Computer science
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
ComputerApplications_COMPUTERSINOTHERSYSTEMS
02 engineering and technology
Markov model
Regularization (mathematics)
law.invention
law
Radar imaging
0202 electrical engineering
electronic engineering
information engineering

Computer vision
Electrical and Electronic Engineering
Radar
Generalized mixture estimation
Hidden Markov model
Radar images
Random field
Hidden Markov random fields
Contextual image classification
business.industry
Maximum-entropy Markov model
Variable-order Markov model
020206 networking & telecommunications
Pattern recognition
Hidden Markov chains
General Earth and Planetary Sciences
020201 artificial intelligence & image processing
Artificial intelligence
Hidden Markov random field
business
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Zdroj: IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2003, 41 (3), pp.675-686. ⟨10.1109/TGRS.2003.809940⟩
ISSN: 0196-2892
DOI: 10.1109/TGRS.2003.809940⟩
Popis: International audience; Due to the enormous quantity of radar images acquired by satellites and through shuttle missions, there is an evident need for efficient automatic analysis tools. This paper describes unsupervised classification of radar images in the framework of hidden Markov models and generalized mixture estimation. Hidden Markov chain models, applied to a Hilbert-Peano scan of the image, constitute a fast and robust alternative to hidden Markov random field models for spatial regularization of image analysis problems, even though the latter provide a finer and more intuitive modeling of spatial relationships. We here compare the two approaches and show that they can be combined in a way that conserves their respective advantages. We also describe how the distribution families and parameters of classes with constant or textured radar reflectivity can be determined through generalized mixture estimation. Sample results obtained on real and simulated radar images are presented
Databáze: OpenAIRE