Quantile Stable Mechanisms
Autor: | Michael Egesdal, Peter F. Chen, M. Bumin Yenmez, Marek Pycia |
---|---|
Rok vydání: | 2021 |
Předmět: |
Statistics and Probability
Technology Matching (statistics) incentives Computer science Compromise media_common.quotation_subject Social Sciences ddc:330 Econometrics contracts Common value auction auctions Aggregate demand Mathematics media_common mechanisms matching Applied Mathematics Incentive Statistics Probability and Uncertainty Construct (philosophy) Quantile |
Zdroj: | Games, Vol 12, Iss 43, p 43 (2021) Games Volume 12 Issue 2 |
ISSN: | 2073-4336 |
DOI: | 10.3390/g12020043 |
Popis: | We construct quantile stable mechanisms, show that they are distinct in sufficiently large markets, and analyze how they can be manipulated by market participants. As a step to showing that quantile stable mechanisms are well defined, we show that median and quantile stable matchings exist when contracts are strong substitutes and satisfy the law of aggregate demand. This last result is of independent interest as experiments show that agents who match in a decentralized way tend to coordinate on the median stable matching when it exists. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |