Semi-heuristic parameter choice rules for Tikhonov regularisation with operator perturbations
Autor: | Uno Hämarik, Stefan Kindermann, Urve Kangro, Kemal Raik |
---|---|
Rok vydání: | 2018 |
Předmět: |
Computer science
Heuristic Applied Mathematics 47A60 47A52 47A55 65J10 65J20 65J22 Numerical Analysis (math.NA) 010103 numerical & computational mathematics 16. Peace & justice 01 natural sciences 010101 applied mathematics Tikhonov regularization Operator (computer programming) Convergence (routing) FOS: Mathematics Data Noise Applied mathematics Mathematics - Numerical Analysis 0101 mathematics Bitwise operation |
Zdroj: | Journal of Inverse and Ill-posed Problems. 27:117-131 |
ISSN: | 1569-3945 0928-0219 |
DOI: | 10.1515/jiip-2018-0062 |
Popis: | We study the choice of the regularisation parameter for linear ill-posed problems in the presence of data noise and operator perturbations, for which a bound on the operator error is known but the data noise-level is unknown. We introduce a new family of semi-heuristic parameter choice rules that can be used in the stated scenario. We prove convergence of the new rules and provide numerical experiments that indicate an improvement compared to standard heuristic rules. 21 pages, 6 figures, will be presented at the Chemnitz Symposium on Inverse Problems 2018 |
Databáze: | OpenAIRE |
Externí odkaz: |