Robustness analysis and behavior discrimination in enzymatic reaction networks

Autor: Lucie M. Gattepaille, Eric Fanchon, Oded Maler, Philippe Tracqui, Alexandre Donzé
Přispěvatelé: VERIMAG (VERIMAG - IMAG), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF), Biologie Computationnelle et Mathématique (TIMC-IMAG-BCM), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Dynamique Cellulaire et Tissulaire- Interdisciplinarité, Modèles & Microscopies (TIMC-IMAG-DyCTiM)
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Boundary detection
Time Factors
[SDV]Life Sciences [q-bio]
Monte Carlo method
lcsh:Medicine
Model parameters
Parameter space
Bioinformatics
Biochemistry
MESH: Matrix Metalloproteinase 14
0302 clinical medicine
Biochemical Simulations
lcsh:Science
MESH: Oscillometry
Bifurcation
0303 health sciences
Numerical Analysis
Multidisciplinary
Calculus
Systems Biology
Enzymes
MESH: Systems Biology
Matrix Metalloproteinase 2
Biological system
Monte Carlo Method
Algorithms
Research Article
Differential equation
MESH: Cell Physiological Phenomena
Systems biology
High Level Languages
MESH: Enzymes
MESH: Algorithms
MESH: Monte Carlo Method
Models
Biological

Cell Physiological Phenomena
03 medical and health sciences
Fuzzy Logic
Oscillometry
Differential Equations
Matrix Metalloproteinase 14
Temporal logic
Biology
030304 developmental biology
Tissue Inhibitor of Metalloproteinase-2
Models
Statistical

MESH: Biochemistry
lcsh:R
MESH: Time Factors
MESH: Models
Biological

Computational Biology
Computing Methods
MESH: Matrix Metalloproteinase 2
MESH: Tissue Inhibitor of Metalloproteinase-2
Nonlinear Dynamics
Computer Science
lcsh:Q
Programming Languages
030217 neurology & neurosurgery
Mathematics
MESH: Models
Statistical
Zdroj: PLoS ONE
PLoS ONE, Public Library of Science, 2011, 6 (9), pp.e24246. ⟨10.1371/journal.pone.0024246⟩
PLoS ONE, Vol 6, Iss 9, p e24246 (2011)
ISSN: 1932-6203
Popis: International audience; Characterizing the behavior and robustness of enzymatic networks with numerous variables and unknown parameter values is a major challenge in biology, especially when some enzymes have counter-intuitive properties or switch-like behavior between activation and inhibition. In this paper, we propose new methodological and tool-supported contributions, based on the intuitive formalism of temporal logic, to express in a rigorous manner arbitrarily complex dynamical properties. Our multi-step analysis allows efficient sampling of the parameter space in order to define feasible regions in which the model exhibits imposed or experimentally observed behaviors. In a first step, an algorithmic methodology involving sensitivity analysis is conducted to determine bifurcation thresholds for a limited number of model parameters or initial conditions. In a second step, this boundary detection is supplemented by a global robustness analysis, based on quasi-Monte Carlo approach that takes into account all model parameters. We apply this method to a well-documented enzymatic reaction network describing collagen proteolysis by matrix metalloproteinase MMP2 and membrane type 1 metalloproteinase (MT1-MMP) in the presence of tissue inhibitor of metalloproteinase TIMP2. For this model, our method provides an extended analysis and quantification of network robustness toward paradoxical TIMP2 switching activity between activation or inhibition of MMP2 production. Further implication of our approach is illustrated by demonstrating and analyzing the possible existence of oscillatory behaviors when considering an extended open configuration of the enzymatic network. Notably, we construct bifurcation diagrams that specify key parameters values controlling the co-existence of stable steady and non-steady oscillatory proteolytic dynamics.
Databáze: OpenAIRE