On the Feistel Counterpart of the Boomerang Connectivity Table

Autor: Bimal Mandal, Hamid Boukerrou, Paul Huynh, Marine Minier, Virginie Lallemand
Přispěvatelé: Cryptology, arithmetic : algebraic methods for better algorithms (CARAMBA), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), This work has been partly funded by the French Direction Générale des Entreprises (DGE) under grant FUI 23 PACLIDO and by the ANR under grant Decrypt ANR-18-CE39-0007., IMPACT-DIGITRUST, ANR-18-CE39-0007,DeCrypt,Langage Déclaratif pour la cryptographie symétrique(2018)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: IACR Transactions on Symmetric Cryptology
IACR Transactions on Symmetric Cryptology, 2020, 2020 (1), pp.331-362. ⟨10.13154/tosc.v2020.i1.331-362⟩
IACR Transactions on Symmetric Cryptology, Ruhr Universität Bochum, 2020, 2020 (1), pp.331-362. ⟨10.13154/tosc.v2020.i1.331-362⟩
IACR Transactions on Symmetric Cryptology; Volume 2020, Issue 1; 331-362
ISSN: 2519-173X
DOI: 10.13154/tosc.v2020.i1.331-362⟩
Popis: International audience; At Eurocrypt 2018, Cid et al. introduced the Boomerang Connectivity Table (BCT), a tool to compute the probability of the middle round of a boomerang distinguisher from the description of the cipher’s Sbox(es). Their new table and the following works led to a refined understanding of boomerangs, and resulted in a series of improved attacks. Still, these works only addressed the case of Substitution Permutation Networks, and completely left out the case of ciphers following a Feistel construction. In this article, we address this lack by introducing the FBCT, the Feistel counterpart of the BCT. We show that the coefficient at row Δi, ∇o corresponds to the number of times the second order derivative at points Δi, ∇o) cancels out. We explore the properties of the FBCT and compare it to what is known on the BCT. Taking matters further, we show how to compute the probability of a boomerang switch over multiple rounds with a generic formula.
Databáze: OpenAIRE