CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption Schemes
Autor: | Nicolas Gama, Christina Boura, Dimitar Jetchev, Mariya Georgieva |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Cryptologie symétrique, cryptologie fondée sur les codes et information quantique (COSMIQ), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Inpher, Ecole Polytechnique Fédérale de Lausanne (EPFL) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
TFHE
2010 Mathematics Subject Classification: 94A60 Computer science 0102 computer and information sciences 02 engineering and technology Topology 01 natural sciences Floating point computation Chimera (genetics) [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] Ring-LWE 0202 electrical engineering electronic engineering information engineering QA1-939 94a60 Applied Mathematics Homomorphic encryption Fully homomorphic encryption HEAAN Computer Science Applications Computational Mathematics Lattice based cryptography 010201 computation theory & mathematics B/FV 020201 artificial intelligence & image processing Lattice-based cryptography Mathematics |
Zdroj: | Journal of Mathematical Cryptology Journal of Mathematical Cryptology, De Gruyter, 2020, 14 (1), pp.316-338. ⟨10.1515/jmc-2019-0026⟩ Journal of Mathematical Cryptology, Vol 14, Iss 1, Pp 316-338 (2020) Journal of Mathematical Cryptology, 2020, 14 (1), pp.316-338. ⟨10.1515/jmc-2019-0026⟩ |
ISSN: | 1862-2976 1862-2984 |
DOI: | 10.1515/jmc-2019-0026⟩ |
Popis: | This paper proposes a practical hybrid solution for combining and switching between three popular Ring-LWE-based FHE schemes: TFHE, B/FV and HEAAN. This is achieved by first mapping the different plaintext spaces to a common algebraic structure and then by applying efficient switching algorithms. This approach has many practical applications. First and foremost, it becomes an integral tool for the recent standardization initiatives of homomorphic schemes and common APIs. Then, it can be used in many real-life scenarios where operations of different nature and not achievable within a single FHE scheme have to be performed and where it is important to efficiently switch from one scheme to another. Finally, as a byproduct of our analysis we introduce the notion of a FHE module structure, that generalizes the notion of the external product, but can certainly be of independent interest in future research in FHE. |
Databáze: | OpenAIRE |
Externí odkaz: |