Mathematical modelling of microtumour infiltration based on in vitro experiments
Autor: | Juan Carlos Calvo, Emmanuel Luján, Alejandro Soba, Nicolás Visacovsky, Liliana Guerra, Cecilia Ana Suárez, Daniel Gandía |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
IN VITRO EXPERIMENTS Computer science Population Monte Carlo method Biophysics Image processing In Vitro Techniques Models Biological Biochemistry Biophysical Phenomena Epithelium MATHEMATICAL MODELLING In vitro model Ciencias Biológicas purl.org/becyt/ford/1 [https] Mice 03 medical and health sciences Neoplasms Spheroids Cellular Image Processing Computer-Assisted Animals Humans Computer Simulation Neoplasm Invasiveness Shape function purl.org/becyt/ford/1.6 [https] education Cell Proliferation education.field_of_study Mathematical model Brain Neoplasms Microcirculation Probabilistic logic Glioma Bioquímica y Biología Molecular Tumour invasion 030104 developmental biology Biological system Monte Carlo Method CIENCIAS NATURALES Y EXACTAS TUMOUR INFILTRATION |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
ISSN: | 1757-9708 1757-9694 |
DOI: | 10.1039/c6ib00110f |
Popis: | The present mathematical models of microtumours consider, in general, volumetric growth and spherical tumour invasion shapes. Nevertheless in many cases, such as in gliomas, a need for more accurate delineation of tumour infiltration areas in a patient-specific manner has arisen. The objective of this study was to build a mathematical model able to describe in a case-specific way as well as to predict in a probabilistic way the growth and the real invasion pattern of multicellular tumour spheroids (in vitro model of an avascular microtumour) immersed in a collagen matrix. The two-dimensional theoretical model was represented by a reaction?convection?diffusion equation that considers logistic proliferation, volumetric growth, a rim with proliferative cells at the tumour surface and invasion with diffusive and convective components. Population parameter values of the model were extracted from the experimental dataset and a shape function that describes the invasion area was derived from each experimental case by image processing. New possible and aleatory shape functions were generated by data mining and Monte Carlo tools by means of a satellite EGARCH model, which were fed with all the shape functions of the dataset. Then the main model is used in two different ways: to reproduce the growth and invasion of a given experimental tumour in a case-specific manner when fed with the corresponding shape function (descriptive simulations) or to generate new possible tumour cases that respond to the general population pattern when fed with an aleatory-generated shape function (predictive simulations). Both types of simulations are in good agreement with empirical data, as it was revealed by area quantification and Bland?Altman analysis. This kind of experimental?numerical interaction has wide application potential in designing new strategies able to predict as much as possible the invasive behaviour of a tumour based on its particular characteristics and microenvironment. Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Guerra, Liliana Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina Fil: Visacovsk, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Gandia, Daniel. Sanatorio de Los Arcos; Argentina Fil: Calvo, Juan Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |