Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden-Popper Perovskites for High-Efficiency Solar Cells
Autor: | Constantinos C. Stoumpos, Tobin J. Marks, Mercouri G. Kanatzidis, Wanyi Nie, Aditya D. Mohite, Chan Myae Myae Soe, Jacky Even, Jean-Christophe Blancon, Hsinhan Tsai, Fangze Liu |
---|---|
Přispěvatelé: | Northwestern University [Evanston], Los Alamos National Laboratory (LANL), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), DE-SC0001059, Basic Energy Sciences, DE-AC52-06NA25396, Office of Science, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
[PHYS]Physics [physics]
Materials science Renewable Energy Sustainability and the Environment Band gap Nanotechnology Crystal growth 02 engineering and technology Substrate (electronics) 010402 general chemistry 021001 nanoscience & nanotechnology Microstructure 7. Clean energy 01 natural sciences Grain size 0104 chemical sciences law.invention [SPI]Engineering Sciences [physics] Chemical engineering law Solar cell [CHIM]Chemical Sciences General Materials Science Thin film 0210 nano-technology Perovskite (structure) |
Zdroj: | Advanced Energy Materials Advanced Energy Materials, 2018, 1 (1), pp.1700979. ⟨10.1002/aenm.201700979⟩ Advanced Energy Materials, Wiley-VCH Verlag, 2018, 1 (1), pp.1700979. ⟨10.1002/aenm.201700979⟩ |
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201700979⟩ |
Popis: | International audience; 2D Ruddlesden–Popper (RP) perovskites have recently emerged as promising candidates for hybrid perovskite photovoltaic cells, realizing power-conversion efficiencies (PCEs) of over 10% with technologically relevant stability. To achieve solar cell performance comparable to the state-of-the-art 3D perovskite cells, it is highly desirable to increase the conductivity and lower the optical bandgap for enhanced near-IR region absorption by increasing the perovskite slab thickness. Here, the use of the 2D higher member (n = 5) RP perovskite (n-butyl-NH3)2(MeNH3)4Pb5I16 in depositing highly oriented thin films from dimethylformamide/dimethylsulfoxide mixtures using the hot-casting method is reported. In addition, they exhibit superior environmental stability over thin films of their 3D counterpart. These films are assembled into high-efficiency solar cells with an open-circuit voltage of ≈1 V and PCE of up to 10%. This is achieved by fine-tuning the solvent ratio, crystal growth orientation, and grain size in the thin films. The enhanced performance of the optimized devices is ascribed to the growth of micrometer-sized grains as opposed to more typically obtained nanometer grain size and highly crystalline, densely packed microstructures with the majority of the inorganic slabs preferentially aligned out of plane to the substrate, as confirmed by X-ray diffraction and grazing-incidence wide-angle X-ray scattering mapping. |
Databáze: | OpenAIRE |
Externí odkaz: |