Bacillus pumilus B12 Degrades Polylactic Acid and Degradation Is Affected by Changing Nutrient Conditions
Autor: | Xianfang Wen, Rachel N. Dunlap, Kyle S. Bonifer, Sahar Hasim, Todd B. Reynolds, Eric R. Gann, Jennifer M. DeBruyn, Elise K. Phillips |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Microbiology (medical)
Potassium poly-lactic acid lcsh:QR1-502 chemistry.chemical_element Bacillus Microbiology lcsh:Microbiology 03 medical and health sciences chemistry.chemical_compound Polylactic acid Nucleotide Food science Original Research 030304 developmental biology degradation chemistry.chemical_classification 0303 health sciences biology 030306 microbiology Bacillus pumilus fungi regulation assay biology.organism_classification Phosphate Enzyme assay Amino acid Monomer chemistry biology.protein |
Zdroj: | Frontiers in Microbiology, Vol 10 (2019) Frontiers in Microbiology |
DOI: | 10.3389/fmicb.2019.02548/full |
Popis: | Poly-lactic acid (PLA) is increasingly used as a biodegradable alternative to traditional petroleum-based plastics. In this study, we identify a novel agricultural soil isolate of Bacillus pumilus (B12) that is capable of degrading high molecular weight PLA films. This degradation can be detected on a short timescale, with significant degradation detected within 48-h by the release of L-lactate monomers, allowing for a rapid identification ideal for experimental variation. The validity of using L-lactate as a proxy for degradation of PLA films is corroborated by loss of rigidity and appearance of fractures in PLA films, as measured by atomic force microscopy and scanning electron microscopy (SEM), respectively. Furthermore, we have observed a dose-dependent decrease in PLA degradation in response to an amino acid/nucleotide supplement mix that is driven mainly by the nucleotide base adenine. In addition, amendments of the media with specific carbon sources increase the rate of PLA degradation, while phosphate and potassium additions decrease the rate of PLA degradation by B. pumilus B12. These results suggest B. pumilus B12 is adapting its enzymatic expression based on environmental conditions and that these conditions can be used to study the regulation of this process. Together, this work lays a foundation for studying the bacterial degradation of biodegradable plastics. |
Databáze: | OpenAIRE |
Externí odkaz: |