Heat-Stable Hazelnut Profilin: Molecular Dynamics Simulations and Immunoinformatics Analysis
Autor: | Badhin Gómez, Vinicius Theiss-De-Rosso, Haruna L Barazorda-Ccahuana, Diego E. Valencia |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Polymers and Plastics
030303 biophysics macromolecular substances Article lcsh:QD241-441 03 medical and health sciences Molecular dynamics lcsh:Organic chemistry immune system diseases otorhinolaryngologic diseases hazelnut profilin Food allergens 030304 developmental biology Thermostability 0303 health sciences immunoinformatic biology Chemistry High capacity General Chemistry respiratory system respiratory tract diseases molecular dynamics simulation Profilin Biophysics biology.protein allergen |
Zdroj: | Polymers Volume 12 Issue 8 Polymers, Vol 12, Iss 1742, p 1742 (2020) |
ISSN: | 2073-4360 |
DOI: | 10.3390/polym12081742 |
Popis: | Heat treatment can modify the allergenic potential, reducing allergenicity in specific proteins. Profilins are one of the important hazelnut allergens these proteins are considered panallergens due to their high capacity for cross-reactivity with other allergens. In the present work, we evaluated the thermostability of hazelnut profilin, combining molecular dynamics simulation and immunoinformatic techniques. This approach helped us to have reliable results in immunogenicity studies. We modeled Cor a 2 profilin and applied annealing simulation, equilibrium, and production simulation at constant temperatures ranging from 300 to 500 K using Gromacs software. Despite the hazelnut profilins being able to withstand temperatures of up to 400 K, this does not seem to reduce its allergenicity. We have found that profilin subjected to temperatures of 450 and 500 K could generate cross-reactivity with other food allergens. In conclusion, we note a remarkable thermostability of Cor a 2 at 400 K which avoids its structural unfolding. |
Databáze: | OpenAIRE |
Externí odkaz: |