The local period function for Hamiltonian systems with applications

Autor: Claudio A. Buzzi, Armengol Gasull, Yagor Romano Carvalho
Přispěvatelé: Universidade Estadual Paulista (Unesp), Univ Autonoma Barcelona, Ctr Recerca Matemat
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Web of Science
Repositório Institucional da UNESP
Universidade Estadual Paulista (UNESP)
instacron:UNESP
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Popis: In the first part of the paper we develop a constructive procedure to obtain the Taylor expansion, in terms of the energy, of the period function for a non-degenerated center of any planar analytic Hamiltonian system. We apply it to several examples, including the whirling pendulum and a cubic Hamiltonian system. The knowledge of this Taylor expansion of the period function for this system is one of the key points to study the number of zeroes of an Abelian integral that controls the number of limit cycles bifurcating from the periodic orbits of a planar Hamiltonian system that is inspired by a physical model on capillarity. Several other classical tools, like for instance Chebyshev systems are applied to study this number of zeroes. The approach introduced can also be applied in other situations.
23 pages
Databáze: OpenAIRE