Best-basis development towards the automatical detection of otolith irregularities in fishes

Autor: J.A. Soria, Vicenç Parisi-Baradad
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. AHA - Arquitectures Hardware Avançades
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Wavelets (Mathematics)--Data processing
Marine biology
Enginyeria agroalimentària::Ciències de la terra i de la vida::Biologia [Àrees temàtiques de la UPC]
Computer science
business.industry
Feature vector
Feature extraction
Wavelet transform
Informàtica::Sistemes d'informació::Bases de dades [Àrees temàtiques de la UPC]
Pattern recognition
Imatges -- Processament
Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo [Àrees temàtiques de la UPC]
Linear discriminant analysis
Object detection
Field (computer science)
Wavelet packet decomposition
Otoliths
Discriminant analysis--Data processing
Otòlits
Principal component analysis
Artificial intelligence
Form perception--Data processing
Bases de dades -- Gestió
business
Wavelets (Matemàtica)
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: The application of feature extraction methodologies and the detection of patterns in sagitae otoliths, which are calcified structures in the inner ear of teleostean fishes, has lead to great knowledge of marine biology during the last decades in order to manage and control its sustainability. A main limitation of the use of statistical analysis and Fourier methods rely on their incapacity to locate irregularities and explain them from a more structural, or even physical, point of view. This matter has been addressed recently by means of the Best-Basis paradigm which combines robust description methods, such as the Wavelet Transform, and the potential of statistical analysis in order to fully automate the selection process of efficient features. This paper is an attempt to readdress this paradigm towards this goal and contrasts other standard tools used in the field of otolith-based fish recognition. The proposed strategy involves the estimation of class distributions, discriminant measures and the search in the feature space.
Databáze: OpenAIRE