Anisimov's Theorem for inverse semigroups
Autor: | Mark Kambites |
---|---|
Rok vydání: | 2015 |
Předmět: |
FOS: Computer and information sciences
Pure mathematics Formal Languages and Automata Theory (cs.FL) Generalization General Mathematics Mathematics::Rings and Algebras 20M18 Inverse Computer Science - Formal Languages and Automata Theory Group Theory (math.GR) Inverse semigroup Regular language Idempotence Formal language FOS: Mathematics Finitely-generated abelian group Mathematics - Group Theory Mathematics |
Zdroj: | International Journal of Algebra and Computation. 25:41-49 |
ISSN: | 1793-6500 0218-1967 |
DOI: | 10.1142/s0218196715400032 |
Popis: | The idempotent problem of a finitely generated inverse semigroup is the formal language of all words over the generators representing idempotent elements. This note proves that a finitely generated inverse semigroup with regular idempotent problem is necessarily finite. This answers a question of Gilbert and Noonan Heale, and establishes a generalisation to inverse semigroups of Anisimov's Theorem for groups. 8 pages |
Databáze: | OpenAIRE |
Externí odkaz: |