A Tunable Structural Family with Ultralow Thermal Conductivity: Copper-Deficient Cu1-x□xPb1-xBi1+xS3
Autor: | Krishnendu Maji, Pierric Lemoine, Adèle Renaud, Bin Zhang, Xiaoyuan Zhou, Virginia Carnevali, Christophe Candolfi, Bernard Raveau, Rabih Al Rahal Al Orabi, Marco Fornari, Paz Vaqueiro, Mathieu Pasturel, Carmelo Prestipino, Emmanuel Guilmeau |
---|---|
Přispěvatelé: | Laboratoire de cristallographie et sciences des matériaux (CRISMAT), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chongqing University [Chongqing], Central Michigan University (CMU), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), University of Reading (UOR) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of the American Chemical Society Journal of the American Chemical Society, 2022, 144 (4), pp.1846-1860. ⟨10.1021/jacs.1c11998⟩ |
ISSN: | 0002-7863 1520-5126 |
Popis: | International audience; Understanding the mechanism that connects heat transport with crystal structures and order/disorder phenomena is crucial to develop materials with ultralow thermal conductivity (κ), for thermoelectric and thermal barrier applications, and requires the study of highly pure materials. We synthesized the n-type sulfide CuPbBi5S9 with an ultralow κ value of 0.6-0.4 W m-1 K-1 in the temperature range 300-700 K. In contrast to prior studies, we show that this synthetic sulfide does not exhibit the ordered gladite mineral structure but instead forms a copper-deficient disordered aikinite structure with partial Pb replacement by Bi, according to the chemical formula Cu1/3□2/3Pb1/3Bi5/3S3. By combining experiments and lattice dynamics calculations, we elucidated that the ultralow κ value of this compound is due to very low energy optical modes associated with Pb and Bi ions and, to a smaller extent, Cu. This vibrational complexity at low energy hints at substantial anharmonic effects that contribute to enhance phonon scattering. Importantly, we show that this aikinite-type sulfide, despite being a poor semiconductor, is a potential matrix for designing novel, efficient n-type thermoelectric compounds with ultralow κ values. A drastic improvement in the carrier concentration and thermoelectric figure of merit have been obtained upon Cl for S and Bi for Pb substitution. The Cu1-x□xPb1-xBi1+xS3 series provides a new, interesting structural prototype for engineering n-type thermoelectric sulfides by controlling disorder and optimizing doping. |
Databáze: | OpenAIRE |
Externí odkaz: |