Development of the Quantum-Inspired SIBFA Many-Body Polarizable Force Field: Enabling Condensed-Phase Molecular Dynamics Simulations

Autor: Sehr Naseem-Khan, Louis Lagardère, Christophe Narth, G. Andrés Cisneros, Pengyu Ren, Nohad Gresh, Jean-Philip Piquemal
Přispěvatelé: Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of North Texas (UNT), Institut Parisien de Chimie Physique et Théorique (IP2CT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of Texas at Dallas [Richardson] (UT Dallas), Biomedical Engineering [Austin], University of Texas at Austin [Austin], Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), European Project: 810367,EMC2(2019)
Rok vydání: 2022
Předmět:
Zdroj: Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation, 2022, 18 (6), pp.3607-3621. ⟨10.1021/acs.jctc.2c00029⟩
ISSN: 1549-9626
1549-9618
DOI: 10.1021/acs.jctc.2c00029⟩
Popis: We present the extension of the SIBFA (Sum of Interactions Between Fragments Ab initio Computed many-body polarizable force field to condensed phase Molecular Dynamics (MD) simulations. The Quantum-Inspired SIBFA procedure is grounded on simplified integrals obtained from localized molecular orbital theory and achieves full separability of its intermolecular potential. It embodies long-range multipolar electrostatics (up to quadrupole) coupled to a short-range penetration correction (up to charge-quadrupole), exchange-repulsion, many-body polarization, many-body charge transfer/delocalization, exchange-dispersion and dispersion (up to C10). This enables the reproduction of all energy contributions of ab initio Symmetry-Adapted Perturbation Theory (SAPT(DFT)) gas phase reference computations. The SIBFA approach has been integrated within the Tinker-HP massively parallel MD package. To do so all SIBFA energy gradients have been derived and the approach has been extended to enable periodic boundary conditions simulations using Smooth Particle Mesh Ewald. This novel implementation also notably includes a computationally tractable simplification of the many-body charge transfer/delocalization contribution. As a proof of concept, we perform a first computational experiment defining a water model fitted on a limited set of (SAPT(DFT)) data. SIBFA is shown to enable a satisfactory reproduction of both gas phase energetic contributions and condensed phase properties highlighting the importance of its physically-motivated functional form.
Databáze: OpenAIRE