A Unifying Framework for Perturbative Exponential Factorizations
Autor: | Fernando Casas, Cristina Chiralt, J A Oteo, Ana Arnal |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Differential equation
General Mathematics Equacions diferencials 01 natural sciences Upper and lower bounds 010305 fluids & plasmas 0103 physical sciences Convergence (routing) Fer expansion Computer Science (miscellaneous) Applied mathematics Zassenhaus formula 010306 general physics Engineering (miscellaneous) Mathematics lcsh:Mathematics Bellman problem Wilcox expansion Order (ring theory) lcsh:QA1-939 Exponential function Transformation (function) sequences of linear transformations Product (mathematics) Scheme (mathematics) Matemàtica |
Zdroj: | Mathematics Volume 9 Issue 6 Repositori Universitat Jaume I Universitat Jaume I Arnal, Ana Casas Pérez, Fernando Chiralt, Cristina Oteo Araco, José Ángel 2021 A Unifying Framework for Perturbative Exponential Factorizations Mathematics 9 6 637 Mathematics, Vol 9, Iss 637, p 637 (2021) RODERIC. Repositorio Institucional de la Universitat de Valéncia instname |
ISSN: | 2227-7390 |
DOI: | 10.3390/math9060637 |
Popis: | We propose a framework where Fer and Wilcox expansions for the solution of differential equations are derived from two particular choices for the initial transformation that seeds the product expansion. In this scheme, intermediate expansions can also be envisaged. Recurrence formulas are developed. A new lower bound for the convergence of theWilcox expansion is provided, as well as some applications of the results. In particular, two examples are worked out up to a high order of approximation to illustrate the behavior of the Wilcox expansion. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |