Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning

Autor: Aleksandra Wierzbicka, Fabio Pizza, Francesca Canellas, António Martins da Silva, Rosa Peraita-Adrados, Ramin Khatami, Teresa Paiva, Laura Lillo-Triguero, Peter Young, Mauro Manconi, Joan Santamaria, Carles Gaig, Birgit Högl, Yves Dauvilliers, Elena Antelmi, Lucie Barateau, Alex Iranzo, Gianina Luca, Markku Partinen, Michel Lecendreux, Johannes Mathis, Geert Mayer, Carole Pesenti, Raphael Heinzer, Zhongxing Zhang, Pablo Medrano-Martínez, Claudio L. Bassetti, Giuseppe Plazzi, Christian R. Baumann, Gert Jan Lammers, Eva Feketeova, Karel Sonka, José Haba-Rubio, Rafael del Rio-Villegas, Corina Gorban, Sebastiaan Overeem, Rolf Fronczek
Přispěvatelé: Signal Processing Systems, Biomedical Diagnostics Lab, Neuropsychiatrie : recherche épidémiologique et clinique (PSNREC), Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), University of Bologna, Centre de Recherche Saint-Antoine (UMRS893), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Zhang, Zhongxing, Mayer, Geert, Dauvilliers, Yve, Plazzi, Giuseppe, Pizza, Fabio, Fronczek, Rolf, Santamaria, Joan, Partinen, Markku, Overeem, Sebastiaan, Peraita-Adrados, Rosa, Da Silva, Antonio Martin, Sonka, Karel, Rio-Villegas, Rafael Del, Heinzer, Raphael, Wierzbicka, Aleksandra, Young, Peter, Högl, Birgit, Bassetti, Claudio L., Manconi, Mauro, Feketeova, Eva, Mathis, Johanne, Paiva, Teresa, Canellas, Francesca, Lecendreux, Michel, Baumann, Christian R., Barateau, Lucie, Pesenti, Carole, Antelmi, Elena, Gaig, Carle, Iranzo, Alex, Lillo-Triguero, Laura, Medrano-Martínez, Pablo, Haba-Rubio, José, Gorban, Corina, Luca, Gianina, Lammers, Gert Jan, Khatami, Ramin
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Multiple Sleep Latency Test
Male
sueño
Data Interpretation
Cataplexy
Databases
Factual

Computer science
[SDV]Life Sciences [q-bio]
humanos
lcsh:Medicine
Excessive daytime sleepiness
Datasets as Topic
narcolepsia
Polysomnography
computer.software_genre
polisomnografía
0302 clinical medicine
Feature (machine learning)
lcsh:Science
narcolepsy
machine learning

Multidisciplinary
medicine.diagnostic_test
Sleep disorders
adulto
Statistical
Sleep Latency
3. Good health
adulto joven
Data Interpretation
Statistical

Female
Supervised Machine Learning
medicine.symptom
enfermedades raras
Adult
Sleep
REM

610 Medicine & health
Machine learning
Models
Biological

Article
03 medical and health sciences
Databases
Young Adult
Rare Diseases
curva ROC
procesos estocásticos
medicine
Humans
Factual
Narcolepsy
Stochastic Processes
business.industry
lcsh:R
Supervised learning
medicine.disease
narcolepsy
machine learning
030228 respiratory system
ROC Curve
lcsh:Q
Artificial intelligence
Sleep
business
computer
030217 neurology & neurosurgery
Zdroj: Scientific reports, vol. 8, no. 1, pp. 10628
Scientific Reports
Scientific Reports, 8(1):10628. Nature Publishing Group
Scientific Reports, 8
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Agência para a Sociedade do Conhecimento (UMIC)-FCT-Sociedade da Informação
instacron:RCAAP
Scientific Reports, Nature Publishing Group, 2018, 8 (1), pp.10628. ⟨10.1038/s41598-018-28840-w⟩
Zhang, Zhongxing; Mayer, Geert; Dauvilliers, Yves; Plazzi, Giuseppe; Pizza, Fabio; Fronczek, Rolf; Santamaria, Joan; Partinen, Markku; Overeem, Sebastiaan; Peraita-Adrados, Rosa; da Silva, Antonio Martins; Sonka, Karel; Rio-Villegas, Rafael del; Heinzer, Raphael; Wierzbicka, Aleksandra; Young, Peter; Högl, Birgit; Bassetti, Claudio; Manconi, Mauro; Feketeova, Eva; ... (2018). Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning. Scientific Reports, 8(1), p. 10628. Nature Publishing Group 10.1038/s41598-018-28840-w
Scientific Reports, Vol 8, Iss 1, Pp 1-11 (2018)
Repositorio Institucional de la Consejería de Sanidad de la Comunidad de Madrid
Consejería de Sanidad de la Comunidad de Madrid
ISSN: 2045-2322
Popis: Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime sleepiness as a core feature. Due to the considerable overlap of symptoms and the rarity of the diseases, it is difficult to identify distinct phenotypes of CH. Machine learning (ML) can help to identify phenotypes as it learns to recognize clinical features invisible for humans. Here we apply ML to data from the huge European Narcolepsy Network (EU-NN) that contains hundreds of mixed features of narcolepsy making it difficult to analyze with classical statistics. Stochastic gradient boosting, a supervised learning model with built-in feature selection, results in high performances in testing set. While cataplexy features are recognized as the most influential predictors, machine find additional features, e.g. mean rapideye-movement sleep latency of multiple sleep latency test contributes to classify NT1 and NT2 as confirmed by classical statistical analysis. Our results suggest ML can identify features of CH on machine scale from complex databases, thus providing 'ideas' and promising candidates for future diagnostic classifications.
The EU-NN database is financed by the EU-NN. The EU-NN has received financial support from UCB Pharma Brussels for developing the EU-NN database.
Databáze: OpenAIRE