Multi-vehicle route planning for efficient urban freight transport
Autor: | Mihhail Matskin, Josep L. Larriba-Pey, Hakan Ferhatosmanoglu, Elif Eser, Petar Mrazovic |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. DAMA-UPC - Data Management Group |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Computer science
Transport network 0211 other engineering and technologies Two-layer local search Transport urbà -- Informàtica 02 engineering and technology Travelling salesman problem Transport engineering Routing (hydrology) First-class citizen 0202 electrical engineering electronic engineering information engineering Automobile parking Local search (optimization) Routing optimization Duration (project management) Freight and freightage -- Data processing computer.programming_language Urban transportation -- Data processing 021103 operations research Barcelona's urban freight transport network business.industry Delivery routes Urban parking spaces Greedy randomized adaptive method Planner Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria [Àrees temàtiques de la UPC] Transport de mercaderies -- Informàtica Data analytics Automòbils -- Aparcament Enginyeria civil::Infraestructures i modelització dels transports [Àrees temàtiques de la UPC] 020201 artificial intelligence & image processing business City logistics computer Variable neighborhood search Multivehicle route planning |
Zdroj: | IEEE Conf. on Intelligent Systems Recercat. Dipósit de la Recerca de Catalunya instname UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The urban parking spaces for loading/unloading are typically over-occupied, which shifts delivery operations to traffic lanes and pavements, increases traffic, generates noise, and causes pollution. We present a data analytics based routing optimization that improves the circulation of vehicles and utilization of parking spaces. We formalize this new problem and develop a novel multivehicle route planner that avoids congestions at loading/unloading areas and minimizes the total duration. We present the developed tool with an illustration and analysis for the urban freight in the city of Barcelona, which monitors tens of thousands of deliveries every day. Our system includes an effective evaluation of candidate routes by considering the waiting times and further delays of other deliverers as a first class citizen in the optimization. A two-layer local search is proposed with a greedy randomized adaptive method for variable neighborhood search. Our approach is applied and validated over data collected across Barcelona's urban freight transport network, which contains 3,704,034 parking activities. Our solution is shown to significantly improve the use of available parking spaces and the circulation of vehicles, as evidenced by the results. The analysis also provides useful insights on how to manage delivery routes and parking spaces for sustainable urban freight transport and city logistics. |
Databáze: | OpenAIRE |
Externí odkaz: |