Multi-vehicle route planning for efficient urban freight transport

Autor: Mihhail Matskin, Josep L. Larriba-Pey, Hakan Ferhatosmanoglu, Elif Eser, Petar Mrazovic
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. DAMA-UPC - Data Management Group
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Computer science
Transport network
0211 other engineering and technologies
Two-layer local search
Transport urbà -- Informàtica
02 engineering and technology
Travelling salesman problem
Transport engineering
Routing (hydrology)
First-class citizen
0202 electrical engineering
electronic engineering
information engineering

Automobile parking
Local search (optimization)
Routing optimization
Duration (project management)
Freight and freightage -- Data processing
computer.programming_language
Urban transportation -- Data processing
021103 operations research
Barcelona's urban freight transport network
business.industry
Delivery routes
Urban parking spaces
Greedy randomized adaptive method
Planner
Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria [Àrees temàtiques de la UPC]
Transport de mercaderies -- Informàtica
Data analytics
Automòbils -- Aparcament
Enginyeria civil::Infraestructures i modelització dels transports [Àrees temàtiques de la UPC]
020201 artificial intelligence & image processing
business
City logistics
computer
Variable neighborhood search
Multivehicle route planning
Zdroj: IEEE Conf. on Intelligent Systems
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The urban parking spaces for loading/unloading are typically over-occupied, which shifts delivery operations to traffic lanes and pavements, increases traffic, generates noise, and causes pollution. We present a data analytics based routing optimization that improves the circulation of vehicles and utilization of parking spaces. We formalize this new problem and develop a novel multivehicle route planner that avoids congestions at loading/unloading areas and minimizes the total duration. We present the developed tool with an illustration and analysis for the urban freight in the city of Barcelona, which monitors tens of thousands of deliveries every day. Our system includes an effective evaluation of candidate routes by considering the waiting times and further delays of other deliverers as a first class citizen in the optimization. A two-layer local search is proposed with a greedy randomized adaptive method for variable neighborhood search. Our approach is applied and validated over data collected across Barcelona's urban freight transport network, which contains 3,704,034 parking activities. Our solution is shown to significantly improve the use of available parking spaces and the circulation of vehicles, as evidenced by the results. The analysis also provides useful insights on how to manage delivery routes and parking spaces for sustainable urban freight transport and city logistics.
Databáze: OpenAIRE