Traitement de données RGB et Lidar à extrêmement haute résolution: retombées de la compétition de fusion de données 2015 de l'IEEE GRSS - Partie A / compétition 2D

Autor: Devis Tuia, Bertrand Le Saux, Hicham Randrianarivo, Adriana Romero-Soriano, Marin Ferecatu, Adrien Lagrange, Stéphane Herbin, Anne Beaupere, Gabriele Moser, Adrien Chan-Hon-Tong, Michal Shimoni, Gustau Camps-Valls, Alexandre Boulch, Carlo Gatta, Manuel Campos-Taberner
Přispěvatelé: Universitat de València (UV), Universitat de Barcelona (UB), Universitat Autònoma de Barcelona (UAB), ONERA - The French Aerospace Lab [Palaiseau], ONERA-Université Paris Saclay (COmUE), École Nationale Supérieure de Techniques Avancées (ENSTA Paris), Centre d'études et de recherche en informatique et communications (CEDRIC), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Royal Military Academy (RMA), University of Genoa (UNIGE), Universität Zürich [Zürich] = University of Zurich (UZH), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Office National d'Etudes et Recherches Aérospatiales - ONERA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), University of Zurich, Tuia, Devis
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Atmospheric Science
010504 meteorology & atmospheric sciences
Computer science
MULTIMODAL-DATA FUSION
Geophysics. Cosmic physics
0211 other engineering and technologies
02 engineering and technology
CONTEST
computer.software_genre
01 natural sciences
Outcome (game theory)
LIDAR
Traitement des images
IMAGE ANALYSIS AND DATA FUSION (IADF)
DEEP NEURAL NETWORKS
Deep neural networks
Traitement du signal et de l'image
MULTIRESOLUTION
910 Geography & travel
Multiresolution
Ground truth
LANDCOVER CLASSIFICATION
IMAGE AERIENNE
1903 Computers in Earth Sciences
Benchmarking
Vision par ordinateur et reconnaissance de formes
Ocean engineering
10122 Institute of Geography
Lidar
Data mining
Extremely high spatial resolution
Multimodal-data fusion
LiDAR
Computers in Earth Sciences
Image analysis and data fusion (IADF)
EXTREMELY HIGH SPATIAL RESOLUTION
CLASSIFICATION
TRAITEMENT IMAGE
1902 Atmospheric Science
APPRENTISSAGE STATISTIQUE
TELEDETECTION
Synthèse d'image et réalité virtuelle
TC1501-1800
021101 geological & geomatics engineering
0105 earth and related environmental sciences
Landcover classification
multiresolution
[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB]
QC801-809
Intelligence artificielle
MULTISOURCE
Sensor fusion
RGB color model
computer
Multisource
Zdroj: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2016, 9 (12), p. 5547-5559. ⟨10.1109/JSTARS.2016.2569162⟩
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 9, Iss 12, Pp 5547-5559 (2016)
ISSN: 1939-1404
DOI: 10.1109/JSTARS.2016.2569162⟩
Popis: International audience; In this paper, we discuss the scientific outcomes of the 2015 data fusion contest organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (IEEE GRSS). As for previous years, the IADF TC organized a data fusion contest aiming at fostering new ideas and solutions for multisource studies. The 2015 edition of the contest proposed a multiresolution and multisensorial challenge involving extremely high-resolution RGB images and a three-dimensional (3-D) LiDAR point cloud. The competition was framed in two parallel tracks, considering 2-D and 3-D products, respectively. In this paper, we discuss the scientific results obtained by the winners of the 2-D contest, which studied either the complementarity of RGB and LiDAR with deep neural networks (winning team) or provided a comprehensive benchmarking evaluation of new classification strategies for extremely high-resolution multimodal data (runner-up team). The data and the previously undisclosed ground truth will remain available for the community and can be obtained at http://www.grss-ieee.org/community/technical-committees/data-fusion/2015-ieee-grss-data-fusion-contest/. The 3-D part of the contest is discussed in the Part-B paper [1].
Databáze: OpenAIRE