Rationality and C2-cofiniteness of certain diagonal coset vertex operator algebras

Autor: Xingjun Lin
Rok vydání: 2022
Předmět:
Zdroj: Journal of Algebra. 608:645-672
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2022.07.001
Popis: In this paper, it is shown that the diagonal coset vertex operator algebra $C(L_{\mathfrak{g}}(k+2,0),L_{\mathfrak{g}}(k,0)\otimes L_{\mathfrak{g}}(2,0))$ is rational and $C_2$-cofinite in case $\mathfrak{g}=so(2n), n\geq 3$ and $k$ is an admissible number for $\hat{\mathfrak{g}}$. It is also shown that the diagonal coset vertex operator algebra $C(L_{sl_2}(k+4,0),L_{sl_2}(k,0)\otimes L_{sl_2}(4,0))$ is rational and $C_2$-cofinite in case $k$ is an admissible number for $\hat{sl_2}$. Furthermore, irreducible modules of $C(L_{sl_2}(k+4,0),L_{sl_2}(k,0)\otimes L_{sl_2}(4,0))$ are classified in case $k$ is a positive odd integer.
28 pages
Databáze: OpenAIRE