Rationality and C2-cofiniteness of certain diagonal coset vertex operator algebras
Autor: | Xingjun Lin |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Algebra. 608:645-672 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2022.07.001 |
Popis: | In this paper, it is shown that the diagonal coset vertex operator algebra $C(L_{\mathfrak{g}}(k+2,0),L_{\mathfrak{g}}(k,0)\otimes L_{\mathfrak{g}}(2,0))$ is rational and $C_2$-cofinite in case $\mathfrak{g}=so(2n), n\geq 3$ and $k$ is an admissible number for $\hat{\mathfrak{g}}$. It is also shown that the diagonal coset vertex operator algebra $C(L_{sl_2}(k+4,0),L_{sl_2}(k,0)\otimes L_{sl_2}(4,0))$ is rational and $C_2$-cofinite in case $k$ is an admissible number for $\hat{sl_2}$. Furthermore, irreducible modules of $C(L_{sl_2}(k+4,0),L_{sl_2}(k,0)\otimes L_{sl_2}(4,0))$ are classified in case $k$ is a positive odd integer. 28 pages |
Databáze: | OpenAIRE |
Externí odkaz: |