Autor: |
H. Moes, van Hj Harry Leeuwen, Dara W. Childs |
Jazyk: |
angličtina |
Rok vydání: |
1977 |
Předmět: |
|
Zdroj: |
Journal of Lubrication Technology : Transactions of the ASME, 99(2), 198-214. American Society of Mechanical Engineers |
ISSN: |
0022-2305 |
Popis: |
Bearing impedance vectors are introduced for plain journal bearings which define the bearing reaction force components as a function of the bearing motion. Impedance descriptions are developed directly for the approximate Ocvirk (short) and Sommerfeld (long) bearing solutions. The impedance vector magnitude and the mobility vector magnitude of Booker are shown to be reciprocals. The transformation relationships between mobilities and impedance are derived and used to define impedance vectors for a number of existing mobility vectors including the finite-length mobility vectors developed by Moes. The attractiveness and utility of the impedance-vector formulation for transient simulation work is demonstrated by numerical examples for the Ocvirk “π”, and “2π” bearing impedances and the cavitating finite-length-bearing impedance. The examples presented demonstrate both bearing and squeeze-film damper application. A direct analytic method for deriving a complete set of (analytic) stiffness and damping coefficients from impedance descriptions is developed and demonstrated for the cavitating finite-length-bearing impedances. Analytic expressions are provided for all direct and cross-coupled stiffness and damping coefficients, and compared to previously developed numerical results. These coefficients are used for stability analysis of a rotor, supported in finite-length cavitating bearings. Onset-speed-of-instability results are presented as a function of the L/D ratio for a range of bearing numbers. Damping coefficients are also presented for finite-length squeeze-film dampers. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|