Metrics and causality on Moyal planes

Autor: Jean-Christophe Wallet, Nicolas Franco
Rok vydání: 2016
Předmět:
Zdroj: Noncommutative Geometry and Optimal Transport. :147-173
ISSN: 1098-3627
0271-4132
DOI: 10.1090/conm/676/13610
Popis: Metrics structures stemming from the Connes distance promote Moyal planes to the status of quantum metric spaces. We discuss this aspect in the light of recent developments, emphasizing the role of Moyal planes as representative examples of a recently introduced notion of quantum (noncommutative) locally compact space. We move then to the framework of Lorentzian noncommutative geometry and we examine the possibility of defining a notion of causality on Moyal plane, which is somewhat controversial in the area of mathematical physics. We show the actual existence of causal relations between the elements of a particular class of pure (coherent) states on Moyal plane with related causal structure similar to the one of the usual Minkowski space, up to the notion of locality.
33 pages. Improved version; a summary added at the end of the introduction, misprints corrected. Version to appear in Contemporary Mathematics
Databáze: OpenAIRE