Overexpression of antioxidant enzymes in ApoE-deficient mice suppresses Benzo(a)pyrene-accelerated atherosclerosis

Autor: ZhongMao Guo, Yanfeng Zhao, LiChun Zhou, Ze-Fen Wang, Xinghua Lin, L. Jackson Roberts, Hong Yang
Rok vydání: 2009
Předmět:
Zdroj: Atherosclerosis. 207:51-58
ISSN: 0021-9150
Popis: The carcinogenic polycylic aromatic hydrocarbon, benzo(a)pyrene (BaP), has been shown to generate reactive oxygen species (ROS) and accelerate the development of atherosclerosis. To assess the causal role of BaP-generated ROS in this process, we evaluated atherosclerotic metrics in apolipoprotein E-deficient (ApoE(-/-)) mice with or without overexpression of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and/or catalase. Without BaP, aortic atherosclerotic lesions were smaller in ApoE(-/-) mice overexpressing catalase or both Cu/Zn-SOD and catalase than in those overexpressing neither or Cu/Zn-SOD only. After treating with BaP or vehicle for 24 weeks, mean lesion sizes in the aortic tree and aortic root of ApoE(-/-) mice were increased by approximately 60% and 40%, respectively. BaP also increased the levels of oxidized lipids in the aortic tree of ApoE(-/-) mice and increased the frequency of advanced lesions. In contrast, BaP did not significantly alter lipid peroxidation levels or atherosclerotic lesions in the aortas of ApoE(-/-) mice overexpressing Cu/Zn-SOD and/or catalase. Overexpression of Cu/Zn-SOD and/or catalase also inhibited BaP-induced expression of cell adhesion molecules in aortas and endothelial cells, and reduced BaP-induced monocyte adhesion to endothelial cells. These observations, together with the functions of catalase and Cu/Zn-SOD to scavenge hydrogen peroxide and superoxide anions, implicate a causal role of ROS in the pathogenesis of BaP-induced atherosclerosis.
Databáze: OpenAIRE