Nuclear magnetic resonance in ferromagnets: Ferromagnetic nuclear resonance; a very broadband approach
Autor: | Christian Meny, Pierre Panissod |
---|---|
Přispěvatelé: | Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Field (physics)
Aucun 02 engineering and technology 01 natural sciences Nuclear magnetic resonance 0103 physical sciences solid state nuclear magnetic resonance structure 010306 general physics ComputingMilieux_MISCELLANEOUS Physics [PHYS]Physics [physics] magnetic anisotropy Spectrometer 021001 nanoscience & nanotechnology Magnetic susceptibility ferromagnetism Magnetic field Ferromagnetism thin films visual_art Electronic component visual_art.visual_art_medium interface nanoparticles 0210 nano-technology Spontaneous magnetization Excitation |
Zdroj: | Annual reports on NMR spectroscopy Annual reports on NMR spectroscopy, pp.47-96, 2021, ⟨10.1016/bs.arnmr.2021.02.001⟩ Annual Reports on NMR Spectroscopy ISBN: 9780128246139 |
Popis: | Nuclear magnetic resonance is not often used for studying ferromagnetic materials. Because of the particularities resulting from the ferromagnetic nature of the samples it is often called ferromagnetic nuclear resonance (FNR). Its first particularity is that, without applying any external magnetic field, the nuclei already experience a magnetic field originating from the spontaneous magnetization of the samples. Therefore, FNR spectra have to be recorded by frequency scanning. The second particularity is that the radiofrequency field experienced by the nuclei is not the RF field applied to the sample but is a field enhanced by the sample's local electronic magnetic susceptibility. The first consequence is that the optimum FNR excitation power required to measure the spectra is not known and has to be determined for each sample and for each environment. The second consequence is that the recorded spectrum for a given RF field power will not reflect the true nuclei frequency density, making difficult quantitative analyses. In this paper we present the experimental approach we have developed to overcome the difficulties resulting from the particularities of FNR. It is presented both from a conceptual point of view as from an experimental and technical point of view. Examples of recent experimental results where this approach has been particularly efficient are given. Finally, the paper is concluded with the proposition of a design for an FNR spectrometer with automated frequency scanning built from on the shelf electronic components. It will allow to make broadband FNR set ups available to a much wider scientific community. |
Databáze: | OpenAIRE |
Externí odkaz: |