Comparing Measured Incoming Shortwave and Longwave Radiation on a Glacier Surface with Estimated Records from Satellite and Off-Glacier Observations: A Case Study for the Forni Glacier, Italy
Autor: | Maurizio Maugeri, Guglielmina Diolaiuti, Veronica Manara, Antonella Senese |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
010504 meteorology & atmospheric sciences
Automatic weather station Science 0208 environmental biotechnology Climate change 02 engineering and technology Solar irradiance 01 natural sciences Cryosphere SARAH Meltwater satellite data 0105 earth and related environmental sciences geography geography.geographical_feature_category COMET radiative fluxes cloud fractional cover daily temperature range AWS1-Forni station Forni Glacier Glacier 020801 environmental engineering Climatology General Earth and Planetary Sciences Satellite Shortwave Geology |
Zdroj: | Remote Sensing; Volume 12; Issue 22; Pages: 3719 Remote Sensing, Vol 12, Iss 3719, p 3719 (2020) |
ISSN: | 2072-4292 |
DOI: | 10.3390/rs12223719 |
Popis: | The development of methods for quantifying meltwater from glaciated areas is very important for better management of water resources and because of the strong impact of current and expected climate change on the Alpine cryosphere. Radiative fluxes are the main melt-drivers, but they can generally not be derived from in situ measures because glaciers are usually located in remote areas where the number of meteorological stations is very low. For this reason, focusing, as a case study, on one of the few glaciers with a supraglacial automatic weather station (Forni Glacier), we investigated methods based on both satellite records and off-glacier surface observations to estimate incoming short- and long-wave radiation at the glacier surface (SWin and LWin). Specifically, for SWin, we considered CM SAF SARAH satellite gridded surface solar irradiance fields and data modeled by cloud transmissivity parametrized from both CM SAF COMET satellite cloud fractional cover fields and daily temperature range observed at the closest off-glacier station. We then used the latter two data sources to derive LWin too. Finally, we used the estimated SWin and LWin records to assess the errors obtained when introducing estimated rather than measured incoming radiation data to quantify glacier melting by means of an energy balance model. Our results suggest that estimated SWin and LWin records derived from satellite measures are in better agreement with in situ observations than estimated SWin and LWin records parametrized from observations performed at the closest off-glacier station. Moreover, we find that the former estimated records permit a significantly better quantification of glacier melting than the latter estimated ones. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |