A novel method for single bacteria identification by Raman spectroscopy

Autor: Isabelle Espagnon, Dorothée Jary, Patricia Claustre, Emmanuelle Schultz, Jean-Marc Dinten, Rémi Perenon, Anne-Catherine Simon, Samy Andrea Strola, Cédric Allier
Přispěvatelé: Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'analyse des données et d'intelligence des systèmes (LADIS), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), SPIE
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Normalization (statistics)
Vibrational spectroscopy
Materials science
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging
02 engineering and technology
spectrum analysis
Bacteria identifications
Signal
Spectral line
03 medical and health sciences
symbols.namesake
Bacteria identification
Nuclear magnetic resonance
statistical analysis
Chemical analysis
Lensfree imaging
signal processing
Environmental applications
Rapid identification
0303 health sciences
Background subtraction
Spectrometer
Bacteria
Spectrometers
030306 microbiology
business.industry
Spectrometry
Bacteriology
Environmental technology
021001 nanoscience & nanotechnology
Fluorescence
Large field of views
Industrial research
Clinical diagnostics
Raman spectroscopy
symbols
Optoelectronics
[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]
0210 nano-technology
business
Luminescence
Automatic recognition
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Zdroj: Proceedings Biomedical Vibrational Spectroscopy VI: Advances in Research and Industry
Proceedings Biomedical Vibrational Spectroscopy VI: Advances in Research and Industry, Feb 2014, San Francisco, CA, United States. ⟨10.1117/12.2039318⟩
Conference on Biomedical Vibrational Spectroscopy VI: Advances in Research and Industry
Conference on Biomedical Vibrational Spectroscopy VI: Advances in Research and Industry, SPIE, Feb 2014, San Francisco, CA, United States. pp.89390D, ⟨10.1117/12.2039318⟩
DOI: 10.1117/12.2039318⟩
Popis: Conference of Biomedical Vibrational Spectroscopy VI: Advances in Research and Industry ; Conference Date: 1 February 2014 Through 2 February 2014; Conference Code:103450; International audience; In this paper we present results on single bacteria rapid identification obtained with a low-cost and compact Raman spectrometer. At present, we demonstrate that a 1 minute procedure, including the localization of single bacterium, is sufficient to acquire comprehensive Raman spectrum in the range of 600 to 3300 cm-1. Localization and detection of single bacteria is performed by means of lensfree imaging over a large field of view of 24 mm2. An excitation source of 532 nm and 30 mW illuminates single bacteria to collect Raman signal into a Tornado Spectral Systems prototype spectrometer (HTVS technology). The acquisition time to record a single bacterium spectrum is as low as 10 s owing to the high light throughput of this spectrometer. The spectra processing features different steps for cosmic spikes removal, background subtraction, and gain normalization to correct the residual inducted fluorescence and substrate fluctuations. This allows obtaining a fine chemical fingerprint analysis. We have recorded a total of 1200 spectra over 7 bacterial species (E. coli, Bacillus species, S. epidermis, M. luteus, S. marcescens). The analysis of this database results in a high classification score of almost 90 %. Hence we can conclude that our setup enables automatic recognition of bacteria species among 7 different species. The speed and the sensitivity (
Databáze: OpenAIRE