Breakdown of a 2D heteroclinic connection in the Hopf-zero singularity (II): The generic case

Autor: O. Castejón, Tere M. Seara, Inmaculada Baldomá
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. SD - Sistemes Dinàmics de la UPC
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: In this paper, we prove the breakdown of the two-dimensional stable and unstable manifolds associated to two saddle-focus points which appear in the unfoldings of the Hopf-zero singularity. The method consists in obtaining an asymptotic formula for the difference between these manifolds which turns to be exponentially small respect to the unfolding parameter. The formula obtained is explicit but depends on the so-called Stokes constants, which arise in the study of the original vector field and which corresponds to the so-called inner equation in singular perturbation theory.
Databáze: OpenAIRE