Asymptotic hitting time for a simple evolutionary model of protein folding

Autor: Véronique Ladret
Přispěvatelé: Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
Jazyk: angličtina
Rok vydání: 2005
Předmět:
Zdroj: Journal of Applied Probability
Journal of Applied Probability, Cambridge University press, 2005, 42 (1), pp.39-51. ⟨10.1239/jap/1110381369⟩
ISSN: 0021-9002
1475-6072
DOI: 10.1239/jap/1110381369⟩
Popis: We consider two versions of a simple evolutionary algorithm (EA) model for protein folding at zero temperature, namely the (1 + 1)-EA on the LeadingOnes problem. In this schematic model, the structure of the protein, which is encoded as a bit-string of length n, is evolved to its native conformation through a stochastic pathway of sequential contact bindings. We study the asymptotic behavior of the hitting time, in the mean case scenario, under two different mutations: the one-flip, which flips a unique bit chosen uniformly at random in the bit-string, and the Bernoulli-flip, which flips each bit in the bit-string independently with probability c/n, for some c ∈ ℝ+ (0 ≤ c ≤ n). For each algorithm, we prove a law of large numbers, a central limit theorem, and compare the performance of the two models.
Databáze: OpenAIRE