Ca2+-mediated Mitochondrial Reactive Oxygen Species Metabolism Augments Wnt/β-Catenin Pathway Activation to Facilitate Cell Differentiation*

Autor: Tareck Rharass, Heiko Lemcke, Daniela Panáková, Margareta Lantow, Dieter G. Weiss, Sergei A. Kuznetsov
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: The Journal of Biological Chemistry
ISSN: 1083-351X
0021-9258
Popis: Background: Dissociation of the Wnt/β-catenin pathway effector Dishevelled from its complex with nucleoredoxin is a redox-sensitive process, yet the ROS sources remain elusive. Results: Mitochondrial Ca2+ influx stimulates endogenous ROS production and mediates Wnt/β-catenin pathway activity. Conclusion: Ca2+-mediated ROS production modulates the signaling efficiency of the Wnt/β-catenin pathway. Significance: Metabolic states influence fundamental and developmental signaling to drive cell differentiation.
Emerging evidence suggests that reactive oxygen species (ROS) can stimulate the Wnt/β-catenin pathway in a number of cellular processes. However, potential sources of endogenous ROS have not been thoroughly explored. Here, we show that growth factor depletion in human neural progenitor cells induces ROS production in mitochondria. Elevated ROS levels augment activation of Wnt/β-catenin signaling that regulates neural differentiation. We find that growth factor depletion stimulates the release of Ca2+ from the endoplasmic reticulum stores. Ca2+ subsequently accumulates in the mitochondria and triggers ROS production. The inhibition of mitochondrial Ca2+ uptake with simultaneous growth factor depletion prevents the rise in ROS metabolism. Moreover, low ROS levels block the dissociation of the Wnt effector Dishevelled from nucleoredoxin. Attenuation of the response amplitudes of pathway effectors delays the onset of the Wnt/β-catenin pathway activation and results in markedly impaired neuronal differentiation. Our findings reveal Ca2+-mediated ROS metabolic cues that fine-tune the efficiency of cell differentiation by modulating the extent of the Wnt/β-catenin signaling output.
Databáze: OpenAIRE