Wick rotation of the time variables for two-point functions on analytic backgrounds

Autor: Michał Wrochna
Přispěvatelé: Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Lett.Math.Phys.
Lett.Math.Phys., 2019, 110 (3), pp.585-609. ⟨10.1007/s11005-019-01230-7⟩
DOI: 10.1007/s11005-019-01230-7⟩
Popis: We set up a general framework for Calder\'on projectors (and their generalization to non-compact manifolds), associated with complex Laplacians e.g. obtained by Wick rotation of a Lorentzian metric. In the analytic case, we use this to show that the Laplacian's Green's functions have analytic continuations whose boundary values are two-point functions of analytic Hadamard states. The result does not require the metric to be stationary. As an aside, we describe how thermal states are obtained as a special case of this construction if the coefficients are time-independent.
Comment: v2: various corrections, presentation improved; to appear in JMP
Databáze: OpenAIRE