Wick rotation of the time variables for two-point functions on analytic backgrounds
Autor: | Michał Wrochna |
---|---|
Přispěvatelé: | Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Generalization
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] FOS: Physical sciences Analytic Hadamard states 01 natural sciences Set (abstract data type) Mathematics - Analysis of PDEs Hadamard transform 0103 physical sciences FOS: Mathematics Point (geometry) 0101 mathematics Special case Mathematical Physics Mathematics 010102 general mathematics Mathematical analysis Statistical and Nonlinear Physics Mathematical Physics (math-ph) Quantum Field Theory on curved spacetimes Metric (mathematics) Wick rotation Calderón projector 010307 mathematical physics Laplace operator Analysis of PDEs (math.AP) |
Zdroj: | Lett.Math.Phys. Lett.Math.Phys., 2019, 110 (3), pp.585-609. ⟨10.1007/s11005-019-01230-7⟩ |
DOI: | 10.1007/s11005-019-01230-7⟩ |
Popis: | We set up a general framework for Calder\'on projectors (and their generalization to non-compact manifolds), associated with complex Laplacians e.g. obtained by Wick rotation of a Lorentzian metric. In the analytic case, we use this to show that the Laplacian's Green's functions have analytic continuations whose boundary values are two-point functions of analytic Hadamard states. The result does not require the metric to be stationary. As an aside, we describe how thermal states are obtained as a special case of this construction if the coefficients are time-independent. Comment: v2: various corrections, presentation improved; to appear in JMP |
Databáze: | OpenAIRE |
Externí odkaz: |