Single tree species classification from Terrestrial Laser Scanning data for forest inventory
Autor: | Lew F.C. Lew Yan Voon, Christophe Stolz, Alexandre Piboule, Ahlem Othmani |
---|---|
Přispěvatelé: | Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), ONF R&D department (ONF), ONF, Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), ONF R&D department ( ONF ) |
Rok vydání: | 2013 |
Předmět: |
010504 meteorology & atmospheric sciences
Laser scanning Computer science 02 engineering and technology computer.software_genre 01 natural sciences Artificial Intelligence 0202 electrical engineering electronic engineering information engineering ComputingMilieux_MISCELLANEOUS Single tree species classification Forest inventory 3D point cloud flattening 3D geometric texture classification 0105 earth and related environmental sciences Forest inventory business.industry Diameter at breast height Wavelet transform Pattern recognition 15. Life on land Contourlet Random forest visual_art Signal Processing [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic visual_art.visual_art_medium 020201 artificial intelligence & image processing Bark [ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic Computer Vision and Pattern Recognition Artificial intelligence Data mining business computer Classifier (UML) Software |
Zdroj: | Pattern Recognition Letters Pattern Recognition Letters, Elsevier, 2013, 34 (16), pp.2144-2150. ⟨10.1016/j.patrec.2013.08.004⟩ Pattern Recognition Letters, Elsevier, 2013, 34 (16), pp.2144-2150. 〈10.1016/j.patrec.2013.08.004〉 |
ISSN: | 0167-8655 |
DOI: | 10.1016/j.patrec.2013.08.004 |
Popis: | Due to the increasing use of Terrestrial Laser Scanning (TLS) systems in the forestry domain for forest inventory, the development of software tools for the automatic measurement of forest inventory attributes from TLS data has become a major research field. Numerous research work on the measurement of attributes such as the localization of the trees, the Diameter at Breast Height (DBH), the height of the trees, and the volume of wood has been reported in the literature. However, to the best of our knowledge the problem of tree species recognition from TLS data has received very little attention from the scientific community. Most of the research work uses Airborne Laser Scanning (ALS) data and measures tree species attributes on large scales. In this paper we propose a method for individual tree species classification of five different species based on the analysis of the 3D geometric texture of the bark. The texture features are computed using a combination of the Complex Wavelet Transforms (CWT) and the Contourlet Transform (CT), and classification is done using the Random Forest (RF) classifier. The method has been tested using a dataset composed of 230 samples. The results obtained are very encouraging and promising. |
Databáze: | OpenAIRE |
Externí odkaz: |