A low-temperature co-fired ceramic micro-reactor system for high-efficiency on-site hydrogen production

Autor: Thomas Maeder, Alejandro J. Santis-Alvarez, Paul Muralt, Dimos Poulikakos, Bo Jiang
Rok vydání: 2015
Předmět:
Zdroj: Journal of Power Sources
ISSN: 0378-7753
DOI: 10.1016/j.jpowsour.2014.09.084
Popis: A ceramic-based, meso-scale fuel processor for on-board production of syngas fuel was demonstrated for applications in micro-scale solid-oxide fuel cells (mu-SOFCs). The processor had a total dimension of 12 mm x 40 mm x 2 mm, the gas reforming micro reactor occupying the hot end of a cantilever had outer dimensions of 12 x 18 mm. The device was fabricated through a novel progressive lamination process in low-temperature co-fired ceramic (LTCC) technology. Both, heating function and desired fluidic structures were integrated monolithically into the processor. Using catalytic partial oxidation of a hydrocarbon fuel (propane) as a reaction model, a thermally self-sustaining hydrogen production was achieved. The output flow is sufficiently high to drive an optimized single membrane mu SOFC cell of about the same footprint as the micro reactor. Microsystem design, fabrication, catalyst integration as well as the chemical characterization are discussed in detail. (C) 2014 Elsevier B.V. All rights reserved.
Databáze: OpenAIRE