D-finite multivariate series with arithmetic restrictions on their coefficients
Autor: | Jason Bell, Daniel Smertnig |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Canadian Journal of Mathematics. :1-35 |
ISSN: | 1496-4279 0008-414X |
DOI: | 10.4153/s0008414x22000517 |
Popis: | A multivariate, formal power series over a field K is a Bézivin series if all of its coefficients can be expressed as a sum of at most r elements from a finitely generated subgroup $G \le K^*$ ; it is a Pólya series if one can take $r=1$ . We give explicit structural descriptions of D-finite Bézivin series and D-finite Pólya series over fields of characteristic $0$ , thus extending classical results of Pólya and Bézivin to the multivariate setting. |
Databáze: | OpenAIRE |
Externí odkaz: |